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SUMMARY 

The investigation of the flight characteristics of free-flying aero- 

dynamically shaped balloons included a literature study, an aerodynamic 

analysis, and fabrication and flight test of six streamlined balloons. 

A small streamlined balloon design was achieved which resulted in stable, 

nose-up flight from ground launch to float altitude. All the large 

streamlined balloons of 150 cubic foot volume failed to fly at zero angle 

of attack but rather were stable at near horizontal position during the 

visible portion of the flight. Variations in flight stability did occur 

at higher altitudes as determined from radar plot board data and as pre- 

dicted by the force equilibrium equations presented. 
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1.0 INTRODUCI'ION 

At the present time there is extensive interest in the capability of 

lightweight balloons to move through the atmosphere without extraneous 

or induced movements perpendicular to the direction of the flight path. 

Aerodynamically shaped balloons, used for many years as powered airships 

or as tethered balloons, are designed primarily to give smooth airflow 

characteristics to a low drag body. Both powered airships and tethered 

balloons fly horizontally, and it was the purpose of this investigation 

to determine if similarly shaped, lighter-than-air balloons would rise 

vertically through the atmosphere along a stable flight path. 

A small, 9-foot long, model capable of attaining 25,000 feet altitude 

was successfully flown several times. Larger models capable of attaining 

50,000 to 60,000 feet altitude did not have stable flight characteristics. 

The literature study revealed that stability is also a major problem for 

airships and tethered balloons. Equations for force and moment equilibrium 

are presented, but have not been confirmed by flight test. 
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2 . 0  REVIEW OF LITWATURE . .  -- 

2.1  GENERAL 

- _ _  The i n v e s t i g a t i o n  . c  of f r e e - f l y i n g ,  aerodynamica l ly  shaped b a l l o e n s  

- --- - .- -_ -_ 

began w i t h  a review of l i t e ra ture  on A i r s h i p s ,  D i r i g i b l e s ,  Blimps and K i t e  

ba l loons .  Of primary i n t e r e s t  w a s  in format ion  on d rag  and s t a b i l i t y  _ _  as . a 

f u n c t i o n  of system shape, volume, and f i n  s i z e .  _ -  

2 . 2  A I R S H I P S  I 

A i r s h i p s  or d i r i g i b l e s  are def ined  as s e l f - p r o p e l l e d ,  l i g h t e r - t h a q -  
._ - -- . 

a i r  c r a f t  w i t h  a means of c o n t r o l l i n g  t h e  d i r e c t i o n  of f l i s h t .  . . . - -  _ _  They - are 

u s u a l l y  c l a s s e d  as r i g i d ,  s e m i r i g i d ,  or nonr ig id .  Most _ -  of t h e  l i t e r a t u r e  

r e l a t i n g  t o  a i r s h i p s  i s  d a t e d  i n  t h e  y e a r s  1915 t o  1932 when c o n s i d e r a b l e  

r e s e a r c h  w a s  conducted by v a r i o u s  government agenc ie s .  There w e r e  62 

documents concerning a i r s h i p s  publ i shed  by NACA du r ing  t h e  p e r i o d  1915 

t o  1949. The d i s a s t e r  of t h e  Hindenberg and t h e  inc reased  c a p a b i l i t i e s  

of heav ie r - than -a i r  a i r c r a f t  r e s u l t e d  i n  t h e  d i s c o n t i n u a t i o n  of  r e s e a r c h  

on l a r g e  a i r s h i p s  of t h e  Akron, Shenandoah, and Zeppel in  t y p e s .  It w a s  

found t h a t ,  w i t h  e l e v a t o r s  and rudders  n e u t r a l ,  t h e  pbenandoah w a s  s t a b l e  

a t  a n  a n g l e  of a t t a c k  of 70 degrees  ( r e f e r e n c e  1). Ektremely h igh  rudder  

and e l e v a t o r  ang le s  are needed t o  main ta in  ze ro  ang le  of a t t a c k .  T e s t s  

of a 1/40 scale model of t h e  U. S. A i r s h i p  "Akron" i n d i c a t e d  t h e  v e h i c l e  

i s  u n s t a b l e  a t  a n g l e s  less than  24 degrees  ( r e f e r e n c e  2 ) .  

Drag c o e f f i c i e n t s  based on volume inc reased  from 0.019 t o  0.024 when 

t a i l  s u r f a c e s  w e r e  added t o  t h e  a i r s h i p  "Akron". The s u r f a c e  area of 

t h e s e  t a i l  f i n s  i s  q u i t e  s m a l l  r e l a t i v e  t o  t h e  s u r f a c e  area of t h e  main 

body - 
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2.3 BLIMPS 

A i r s h i p s  of t h e  nonr ig id  t y p e ,  c a l l e d  blimps, are s t i l l  i n  l i m i t e d  use ,  

and a few r e p o r t s  concern ing  them were reviewed. Most of t h e  blimps w e r e  

of t h e  N a v y  Class C shape o r  c l o s e  approximations t h e r e o f .  N o  l i t e ra ture  

r e l a t i n g  t o  tests of s t a b i l i t y  of such v e h i c l e s  w a s  found. 

2.4 KITE BALLOONS 

Aerodynamically shaped t e t h e r e d  b a l l o o n s ,  r e f e r r e d  t o  as k i t e  b a l l o o n s ,  -- - - _ -_  .- . _  

are used e x t e n s i v e l y  t o  suspend ins t ruments  i n  t h e  atmosphere a t  d e s i r e d  ._. . - . 
l e v e l s .  The ba l loons  are a t t a c h e d  t o  t h e  t e t h e r  l i n e s  so as t o  be a t  some 

a n g l e  of a t t a c k  t o  h o r i z o n t a l  winds. I n  wind c o n d i t i o n s  t h e  ba l loons  pro- . -  

v i d e  c o n s i d e r a b l e  aerodynamic l ift and a minimum d r a g ,  and t h e r e f o r e ,  are - _ _ _  

a b l e  t o  keep t h e  t e t h e r  l i n e s  n e a r l y  v e r t i c a l  d e s p i t e  wind c o n d i t i o n s .  

Most of t h e  informat ion  a v a i l a b l e  on t e t h e r e d  aerodynamica l ly  shaped ba l loons  

a l s o  r e l a t e d  t o  Navy Class C shapes  or m o d i f i c a t i o n s  t h e r e o f .  

2.5 DRAG OF S T R E A M L I N E D  - BODIES 

S e v e r a l  r e f e r e n c e s  ( 3  and 4) were found which p resen ted  t h e  d rag  of 

-- 

.- - _  .- . 

t h e  Navy Class C a i r s h i p  h u l l  as a f u n c t i o n  of f i n e n e s s  r a t i o .  The drag  

d a t a  are u s u a l l y  p re sen ted  i n  two ways. The f i r s t  i s  based on f r o n t a l  

area o n l y  and i n d i c a t e s  t h a t  a n  a i r s h i p  of f i n e n e s s  r a t i o  f = 2.1:l  has  

t h e  least  t o t a l  d rag  based on f r o n t a l  area. However, of more importance 

t o  m o s t  a p p l i c a t i o n s  i s  t h e  d rag  per u n i t  of volume. I n f o p $ i f i o n  p resen ted  

i n  t h e  above mentioned r e f e r e n c e s  ind ica t ed  t h e  minimum drag  p e r  u n i t  volume 

o c c u r s  a t  a f i n e n e s s  r a t i o  of 4 .5  t o  4.62 f o r  t h e  C - C l a s s  shape. The d rag  

c o e f f i c i e n t  (based  on volume) of the C-Class  a i r s h i p  h u l l  of f i n e n e s s  r a t i o  

of 3 : l  i s  shown t o  be 0.0205; t h i s  is wi thout  f i n s .  Reference 5 on t e t h e r e d  

s t r e a m l i n e d  ba l loons  i n d i c a t e d  a drag c o e f f i c i e n t  of 0.12 f o r  a C - C l a s s  

. . - _  . .  
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ba l loon  w i t h  Y-type i n f l a t e d  t a i l  f i n s .  These d a t a  are t aken  from a wind 

tunne l  s tudy  by Bai rs tow ( 6 ) .  

From t h e s e  d a t a ,  it is apparent  t h a t  t h e  d rag  of t h e  i n f l a t e d  f i n s  

i s  g r e a t e r  t h a n  t h e  drag of t h e  s t r eaml ined  h u l l .  

2.6 DYNAMIC STABILITY 

The l i t e r a t u r e  concern ing  l a r g e  a i r s h i p s  r evea led  t h a t  t hey  w e r e  n o t  

s t a b l e  a t  z e r o  a n g l e  of a t t a c k ,  and t h a t  s t r a i g h t  f l i g h t  was  achievhd by 

means of .. . movement of c o n t r o l  s u r f a c e s  on t h e  t a i l  f i n s .  An example of 

t h i s  i s  l i s t e d  i n  r e f e r e n c e  7 which i n d i c a t e d  t h e  ZMC-2 a i r s h i p  would 

s p i n  o u t  i n  a t u r n  and t h a t  t h e  Shenandoah and t h e  Army AC a i r s h i p s  

were u n s t a b l e .  The s t a b i l i t y  i n  f l i g h t  d i r e c t i o n  of t h e  blimp-type a i r -  

s h i p s  i s  a l s o  main ta ined  by means of t h e  t a i l  f i n  c o n t r o l  s u r f a c e .  

Te thered  s t r eaml ined  ba l loons  a r e  a l s o  dynamica l ly  u n s t a b l e  under 

c e r t a i n  t e t h e r  l i n e  c o n d i t i o n s  (5) and a t  h igh  wind v e l o c i t y  c o n d i t i o n s .  

Of c o u r s e  t h e s e  ba l loons  a r e  purpose ly  t e t h e r e d  a t  a small a n g l e  of 

a t t a c k  (5 t o  10 degrees )  to  provide  aerodynamic l i f t  from winds. 

-4- 



3 . 0  AERODYNAMIC ANALYSIS 

3.1 BACKGROUND - 
The investigation . .  was concerned primarily with a determination of 

the flight characteristics of free-flying, aerodynamically shaped balloons 

such as the airships, blimps and tethered kite balloons presently i f i  use. 

The purpose of the investigation was to determine if aerodynamically-shaped 

balloons would rise vertically through the atmosphere in a nose-up position 

at zero or near zero angle of attack. A free flying streamlined balloon 

which is stable at zero angle of attack would have little or no aerodynamic 

lift and minimum drag for an extremely fast rise rate. 

3.2 STATIC STABILITY - EQUILIBRIUM OF FORCES -- - 
If a system is to be in equilibrium, the resultant force 3nd the 

resultant couple must be equal to zero, and the conditions for equilibrium - -  
are : 

R = Z F = O  (1) 

C =  Z M = O  ( 2 )  

where R is the resultant force, C is the resultant couple, F is an 

individpdlforce, and M is an individual moment. 

It is convenient to describe the force system in rectangular coordi- 

nates -. ._ and the general equations of equilibrium become: 

Z F x = O  

Z F  = o  
Y 

Z F Z = O  

Z M  = O  
X 

Z M  = O  
Y 

Z M  = O  
Z 

-5- 
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For simplification purposes we will consider only the vertical (x, y) 

plane which leaves us with the following equations of: 

Z F  = O  (9) 

Z F  = O  (10) 

X 

Y 
z M z = o  (11) 

For a heavier-than-air vehicle such as a bomb o r  a missile the 

point about which the moments are zero is the center of gravity (c.g.1. 

The c.g. location can be determined by calculation or by balance measure- 

ment. The buoyant force of the displaced air is automatically included 

in the location of c.g. by balance measurement and is generally too small 

to be of significance in calculations. 

For a lighter-than-air vehicle, such as the streamlined balloons 

under consideration here, the buoyant force (B) may be several times 

larger than the total weight of the balloon (W) and the inflation gas. 

The summation of forces in the vertical direction, Z F will be zero, as 

required by equation 10, when a d o w n d  force equal to the free lift is 
YY 

applied to the balloon. In flight this downward force will be the vertical 

component of the resultant aerodynamic force (Q 1. 
Y 

Z F  Y = B - W - Q Y = o  
(12) 

Under static conditions there are no forces in the horizontal (x) 

direct ion : Z F  = O  (13) 
X 

The moment forces on the streamlined balloon will be zero, as re- 

quired by equation 11, when the dowmardforce <Q ) is applied at a 

distance (c) from the center of buoyancy as shown in Figure 1. 
Y 

Then Z M  = B c - W ( c + d ) = O  (14) 
Z 

where d is the distance between the center of buoyance and the center 

of gravity. 
-6- 



A helium-filled, streamlined balloon is statically balanced in 

the horizontal position when the downward force is applied at the balance 

point designated as the center-of-free-lift. 

I ' I  I 

FIGURE 1 

Forces and Their Locations 
On A Statically-Balanced, 

Stream1 ined Balloon 

As indicated previously the vertical component of the resultant 

aerodynamic force (Q 1 will balance the balloon free lift during flight. 
Y 

If the streamlined balloon flies at a stable angle of attack, that 

angle will be such that the aerodynamic force (Q 1 will pass through the 

balloon center-of-free-lift. From equation 15 it is seen that the location 

of the center-of-free-lift changes during flight as the buoyance decreases 

with increasing altitude. This is based on the fact that the location of 

the center of buoyancy remains constant for a balloon of fixed shape. Now 

as the balloon buoyancy decreases with altitude the center-of-free-lift 

moves forward (for a ballon on which the center of gravity is located aft 

Y 
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of the center of buoyancy). A s  the center-of-free-lift does move forward 

the balloon flight angle will decrease until a new condition of equilibrium 

of forces and moments is attained. At some altitude the center-of-free- 

lift will move forward of all possible locations of the resultant aerodynamic 

force and the streamlined balloon will fly at zero angle of attack if 

it is basically aerodynamically stable, or  oscillate about its equilibrium 

angle if this is other than zero angle of attack. 

Moments on airships and blimps have been measured at the vehicle 

center of buoyancy. Because airships and blimps travel at float altitudes 

there is no free lift. Also the airship center of gravity must be, located 

at or very near the center of buoyancy for static stability at zero angle 

of attack. These conditions are considerably different than those imposed 

on the free flying airships of interest here as it is the free lift which 

is the propelling force for these balloons. 

3 . 3  VERTICAL RISE RATE -- 
The resultant aerodynamic focce in the vertical direction is equal to 

the buoyant force minus the weight and goes to zero as the balloon approaches 

float altitude. The resultant aerodynamic force is also a function of 

shape coefficient and relative velocity. The shape coefficient changes 

with angle of attack and therefore the vertical rise rate is directly 

dependent on the equilibrium angle of attack the streamline balloon assumes. 

The fastest rise rates will be attained when the balloon is stable at zero 

angle of attack where the system has the lowest shape coefficient. 

3.4 BALLOON RESPONSE TO HORIZONTAL WINDS 
-e - -- 

- If the center of gravity of the streamlined balloon is coincident 



with the center of buoyance, the balloon will be statically stable at any 

arlgle, but dynamically stable at zero angle of attack only (assuming we 

are working with an aerodynamically stable balloon system). Such a stream- 

lined balloon will be a pure drag device which is always at zero angle 

of attack to the relative air velocity. The response to horizontal winds 

will be strictly a function of its mass, the mass of the displaced air, 

and the square of the rise rate. This is the same as the response of 

presently used spherical wind sensing balloons. 

If the center of gravity of the streamlined balloon remains behind 

the center of buoyancy, the balloon will have a stabilizing moment in 

the vertical direction even when the unit is subject to a horizontal wind 

shear. The resultant angle of attack of the balloon will be such that 

the moment due to buoyancy is balanced by the moment due to aerodynamic 

forces on the balloon at the center of pressure. In this case the re- 

sponse of the shaped balloon to the wind will be better than that of a 

pure drag device (of the same size and weight) but the balloon will still 

retain some response lag. 

- 9- 



4.0 EXPEXIMENTAL FIN DESIGNS AND TESTS - -- 

4.1 BACKGROUND 

A small s t r eaml ined  ba l loon  shape as o u t l i n e d  i n  F i g u r e  2 w a s  es- 

t a b l i s h e d  a t  t h e  beginning  of t h e  program for t h e  purpose of i n v e s t i g a t i n g  

f i n  des igns .  The requi rements  f o r  f i n s  w e r e  t h a t  t hey  be as l i g h t w e i g h t  

as p o s s i b l e  but  also l a r g e  and r i g i d .  

4.2 INFLATED FIN DESIGNS - 
Most aerodynamica l ly  shaped ba l loons  use i q f l z t e d  f i n s  for s t a b i l i z a -  

t i o n  purposes.  These f i n s  are u s u a l l y  f a b r i c a t e d  s e p a r a t e l y  

a t t a c h e d  t o  t h e  main ba l loon  body. 

4 .2 .1  F i r s t  F i n  Design _. -- 
A f i n  des ign  which inc luded  t h e  f i n  as a p a r t  of 

ba l loon  gore  w a s  e s t a b l i s h e d  f o r  t h e  purpose of de te rmining  

and then  

t h e  main 

f i n t e g r a  

f i n s  c o u l d  be used t o  reduce  weight .  P e r t i n e n t  d a t a  are g iven  i n  Table  1, 

The i n t e g r a l  f i n  des ign  w a s  e s s e n t i a l l y  a f a i l u r e  as t h e r e  w a s  no r i g i d i t y  

between t h e  f i n  and t h e  main body. I n  a d d i t i o n  t h e  v a r i o u s  t u b u l a r  s e c t i o n s  

of t h e  f i n  w e r e  made wi thou t  b a f f l e s  and t h i s  r e s u l t e d  i n  l o s s  of r i g i d i t y  

between t u b u l a r  s e c t i o n s .  The ba l loon  w a s  f l i g h t  t e s t e d  bu t  t h e  f i n s  

f o l d e d  ove r  immediately and t h e  ba l loon  ascended i n  a n e a r  h o r i z o n t a l  

p o s i t i o n  which i n d i c a t e d  t h a t  i t s  s t a b l e  a n g l e  of f l i g h t  w a s  n e a r  n i n e t y  

d e g r e e s .  

4 .2 .2  Second F i n  Design - 
The second f i n  des ign  u t i l i z e d  s e p a r a t e  f i n s  wi th  a wide base ,  

and b a f f l e s  f o r  f a b r i c a t i o n  of t h e  t u b u l a r  s e c t i o n s .  The f i r s t  f i n s  

f i ab r i ca t ed  t o  t h i s  des ign  w e r e  a l s o  cons idered  u n s a t i s f a c t o r y  as t h e r e  

was  c o n s i d e r a b l e  leakage .  However, a r edes ign  as shown i n  F igu re  2 
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u t i l i z e d  a base  p l a t e  which w a s  f a s t e n e d  t o  t h e  main body ove r  t h e  e n t i r e  

base  area and e s s e n t i a l l y  e l i m i n a t e d  leakage. 

lengthened  and widened t o  provide  a d d i t i o n a l  r i g i d i t y  between t u b u l a r  

s e c t i o n s .  P e r t i n e n t  ba l loon  d a t a  are p resen ted  i n  Table  2.  A b a l l a s t  of 

50 grams w a s  p laced  i n  t h e  nose of t h e  s t r e a m l i n e d  ba l loon  t o  l o c a t e  t h e  

c e n t e r  of g r a v i t y  n e a r  t h e  c e n t e r  of buoyancy. When f l i g h t  t e s t e d ,  t h i s  

The b a f f l e  p l a t e s  w e r e  a l s o  

s t r e a m l i n e d  ba l loon  ascended i n  a nose-up p o s i t i o n  a t  a v e r y  r a p i d  rise 

rate. Vi sua l  o b s e r v a t i o n s  and movie f i l m  i n d i c a t e d  e x c e l l e n t  s t a b i l i t y  

about z e r o  a n g l e  of a t t a c k  d u r i n g  t h e  e n t i r e  f l i g h t .  The i n f l a t e d  f i n s  

remained r i g i d  as r e q u i r e d  du r ing  t h e  f l i g h t  tes t .  Later, afi i d e n t i c a l  

ba l loon  w i t h  t h e  50-gram b a l l a s t  placed i n  t h e  t a i l  f l e w  e q u a l l y  w e l l .  

4.3 NONINFLATED FINS 

Methods of c o n s t r u c t i n g  non- in f l a t ed  f i n s  w e r e  a l s o  i n v e s t i g a t e d .  

Of s p e c i a l  i n t e r e s t  w a s  t h e  p o s s i b i l i t y  of u s ing  a r i g i d  f i n  o u t l i n e  

w i t h  a s i n g l e  l a y e r  of material f o r  t he  ac tua l  f i n .  Rig id  p l a s t i c  rods  

or t u b e s  w e r e  cons ide red  as a method of a t t a i n i n g  t h e  d e s i r e d  f i n  o u t l i n e .  

The requi rement  t h a t  t o t a l  ba l loon  weight be as low as p o s s i b l e  es-  

t a b l i s h e d  weight as t h e  c r i t e r i a  for comparison of i n f l a t e d  and r i g i d  f i n  

sys  terns. 

S e v e r a l  p l a s t i c  rods  and tubes  a s  l i s t e d  i n  Table  3 w e r e  purchased 

f o r  e v a l u a t i o n .  

f o r  an  o u t l i n e  l e n g t h  of 60 inches .  T h i s  i s  0.0132 pounds/foot. The on ly  

p l a s t i c  material which cou ld  approach t h i s  w a s  3/16 inch  d iameter  nylon 

rod  w i t h  a weight of 0.014 pounds/foot. The nylon rod w a s  n o t  one of t h o s e  

The i n f l a t e d  f i n s  had a weight of  approximate ly  30 grams 

c o n s i d e r e d  t o  have s u f f i c i e n t  s t i f f n e s s  f o r  t h i s  purpose. A f i n  o u t l i n e  

w a s  made of  De l r in  rod and w a s  found t o  be of s u f f i c i e n t  s t i f f n e s s  i f  

p r o p e r l y  h e l d  a t  t h e  ends .  Because of t h e  e x t r a  weight a s s o c i a t e d  wi th  
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------- 

W R E - 2  SMALL STREAMLINED BALLOON 
€SIBBUSHED FOB FIN DESIGN STUDIES 

-12-  



t h e  s t i f f e n i n g  rods ,  no f u r t h e r  c o n s i d e r a t i o n  w a s  g iven  t o  t h e  f i n  o u t l i n e  

method of c o n s t r u c t i o n  a t  t h a t  t i m e .  However, t h e  r i g i d  f i n s  concept  i s  

s t i l l  of importance because of poss ib l e  d rag  r educ t ion  and reduced cost 

pos s i b i l  it ies . 

-13- 



TABLE 1: EXPERIMENTAL BALLOON FLIGHT TEST NO. 1 

Date: August 1 7 ,  1965 

Ai r sh ip  Data: 

Length 

Center  of Grav i ty  

Center  of F ree  L i f t  

Center  of Buoyancy 

Weight 

Free  L i f t  

To ta l  L i f t  

Volume (based  on l i f t )  

R e s u l t s  : 

Balloon w a s  s t a b l e  a t  near  90 degree  ang le  of 

a t t a c k .  Balloon ascended s lowly i n  nea r  h o r i z o n t a l  

p o s i t  ion.  

108.0 inches  

58.5 inches  

37.5 inches  

53.1 inches  

139.1 grams 

440.0 grams 

579.1 grams 

19.4 c u b i c  f e e t  
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TABLE 2: EXPERIMENTAL BALLOON FLIGHT TEST NO. 2 

Date: August 20, 1965 

A i r s h i p  Data: 

Length 108.0 inches  

Center of G r a v i t y  61.5 inches  

Center of F r e e  L i f t  45.0 i n c h e s  

Center  of Buoyancy 49.0 inches  

Weight 162 .3  grams 

F ree  L i f t  504.5 grams 

T o t a l  L i f t  666.8 grams 

Volume (based  on l i f t )  22.3 c u b i c  f e e t  

I n f l a t e d  F i n  S ize :  ( t h r e e  used) 

Height 18 inches  

Base Length 2 7  i nches  

T i p  Length 22 inches  

S p e c i a l  Note: 50 grams b a l l a s t  weight w a s  l o c a t e d  i n  

nose of ba l loon  t o  s h i f t  c e n t e r  of 

g r a v i t y  t o  4 7  inches  a f t  of nose.  

Balloon ascended nose  up a t  a r a p i d  rise 

ra te  - w a s  very  s t a b l e  a t  z e r o  or n e a r  

z e r o  ang le  of a t t a c k .  

R e s u l t s  : 
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MATERIAL 

TABLE 3: PLASTIC RODS. AND TUBES 
EVALUATED FOR USE AS FIN 
REINFORCEMENT 

1. Delrin Square Rod 

2. Delrin Rod 

3 .  Nylon Rod 

4. Teflon Rod 

5. Polyethylene Rod 

6 .  Cast Acrylic Rod 

7 .  Hi Density Polyethylene 
Rod 

8. Lexan Polycarbonate Rod 

9.  Polypropylene Rod 

10. Cellulose Acetate 
Butyrate Tubing 

11. Extruded Polystyrene 
Tubing 

SIZE 
( inches) 

WEIGHT PH( 
FOOT LENGTH 
( pounds 1 

1/4 dia & 3/8 sq. 0.030 

3/16 diameter 0.014 

3/16 diameter 0.028 

1/4 diameter 0.020 

1/4 diameter 0.026 

1/4 diameter 0.025 

1/4 diameter 

1/4 diameter 0.020 

1/4 O.D. & 1/8 I.D. 
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5.0 FLIGHT TESTS 

5 .1  FLIGHT TEST BALKOONS - 
Six  - .  s t r eaml ined  ba l loons  of t h e  C l a s s - C  shape were f a b r i c a t e d  f o r  

f l i g h t  test a t  NASA, Wallops S t a t i o n ,  Wallops I s l a n d ,  V i r g i n i a .  Three 

f i n e n e s s  ra t ios  and t h r e e  f i n  s i z e s  were used. The f i n e n e s s  r a t i o s  w e r e  

2 ,  3 ,  and 4 t o  1 and t h e  i n f l a t e d  f i n  s i z e s  w e r e  7 ,  10,  and 13  squa re  

f e e t  each. P e r t i n e n t  d a t a  r e l a t i n g  t o  t h e s e  s t r eaml ined  b a l l o o n s  are 

p r e s e n t e d  i n  Table  4 ,  and a photo of ba l loon  number 1 i s  p resen ted  i n  

F igu re  3 .  The ba l loon  shapes  w e r e  determined us ing  e q u a t i o n  1 which i s  

from r e f e r e n c e  8. 

n + m  n 
X m 

(L - x> ( n  + m >  
n m  2 fn  m n + m - 1  

L 
Y =  (16) 

where : 

x is  o r d i n a t e  d i r e c t i o n  

y i s  a b s i s s a  d i r e c t i o n  

L is  t o t a l  a i r s h i p  l e n g t h  i n  x d i r e c t i o n  

f i s  f i n e n e s s  r a t i o  

n i s  d imens ionless  c o e f f i c i e n t  = 0.30 

m i s  d imens ionless  c o e f f i c i e n t  = 0.56 

The o f f i c i a l  o f f s e t s  f o r  a Navy Class C a i r s h i p  are g iven  i n  Table 2. 

The r e s u l t i n g  shapes  from e q u a t i o n  16 and Table  2 are n e a r l y  i d e n t i c a l  as 

shown i n  F igu re  4.  

It w a s  determined e a r l y  i n  t h e  f l i g h t  tes t  program t h a t  t h e  C-Class 

b a l l o o n s  would no t  rise v e r t i c a l l y  a t  z e r o  ang le  of a t t a c k .  The re fo re ,  

o n l y  f o u r  of t h e  o r i g i n a l  s i x  ba l loons  w e r e  f l i g h t  t e s t e d .  One small 

b a l l o o n  which had been flown e a r l i e r  i n  f i n  des ign  s t u d i e s ,  and w a s  known 
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to be stable, was flight tested. (See Figure 2). This was balloon 

number 7 which flew in flight test number LC-2508. 

test was conducted with a streamlined balloon designed with the intent 

of locating the-center of buoyancy as far forward as possible. This is 

balloon number 8 shown in Figure 5, which is described as a hemisphere- 

cone shape with a 4:l fineness ratio. This balloon had four, extra 

large fins, one of which tore the main balloon body shortly after launch 

on flight test LC-2511. The fin failure is attributed to the extremely 

large loads applied to them. This hemisphere-cone balloon has since been 

redesigned to include fin reinforcements attached across the outer ends 

of the fins to prevent bending of fins due to aerodynamic loads. 

The sixth flight 



0 

5 a 
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BALLOON NUMBEE? 

Balloon Shape 

a>  C-Class 

b) Modified C-Class  

c >  Hemisphere-cone 

Fineness  Rat io  

Length (L) i n  F e e t  

Volume of Body ( F t 3 >  

Number of F i n s  

F i n  Area Each (Sq.Ft.)  

T o t a l  L i f t  (Lbs. 

Weight ( l b s .  

F r e e  L i f t  ( lbs . ) 
Center  of Gravi ty*  

Center  of Buoyancy 

Center  of F r e e  L i f t  

* Center  of  g r a v i t y  of 

TABLE 4 

STREAMLINED BALLOON DATA 

1 2 3 4 

X X 

3:l 3:l 

1 3 . 7  1 3 . 7  

150 150 

3 3 

7 10 

9.42 10.00 

0.90 1.00 

8.52 9.00 

.582L .620L 

.484L .503L 

.475L .490L 

X X 

3:l  

13.7 

150 

3 

13 

10.62 

1.11 

9.51 

.650L 

.504L 

.486L 

4: 1 

16.5 

150 

3 

10  

9.50 

1.00 

8.50 

.602L 

.501L 

.490L 

b a l l o o n  s k i n  on ly ,  does n o t  inc lude  

5 6 7 8 

X X 

2: l  

10.4 

150 

3 

10 

9.21 

1.22 

7 - 9 9  

.548L 

-46  8L 

-45 6L 

3:l 

15.0 

200 

3 

10 

13.27 

1.08 

12.19 

.667L 

.498L 

.484L 

X 

X 

4:l 4:l 

9.0 20 

-- 150 

3 4 

3 18 

1.49 11.863 

.51 2.315 

.98 9.548 

.398L .521L 

.419L .428L 

.43OL .406L 

mass of i n f l a t i o n  gas .  
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TABLE 5 

Offsets For C-Class Airship (Reference 4) 

x/l 

0 

0.0125 

0.0250 

0.0500 

0.0750 

0.100 

0.125 

0.150 

0.200 

0.250 

0.300 

0.35 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

0.95 

0.98 

1.00 

2 y/ t  

0 

0.200 

0.335 

0.526 

0.658 

0.758 

0.835 

0.887 

0.947 

0.982 

0.998 

0.999 

0.990 

0.950 

0.885 

0.790 

0.665 

0.493 

0.362 

0.225 

0 
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5.2 FLIGHT TEST LC-2503 

The f i r s t  s t r eaml ined  ba l loon  f l i g h t  test ,  LC-2503, w a s  w i t h  . .  ba l loon  - -  . _  - -  -- 
number 2 ,  which is a C - C l a s s  shape of 3: l  f i n e n e s s  r a t io  wi th  t h r e e  f i n s  

of 10 square  f o o t  area each.  Three small a i r s c o o p s  w e r e  added t o  t h e  

ba l loon ,  one each  between f i n s .  These a i r s c o o p s  w e r e  30 inches  long wi th  

a 3:l i n l e t  t o  e x i t  area (R i n l e t  = 10 inches) .  T h i s  s t r e a m l i n e d  ba l loon  

f l e w  i n  a nea r  h o r i z o n t a l  p o s i t i o n  during a l l  of t h e  v i s u a l l y  recorded 

p o r t i o n  of  t h e  f l i g h t .  Radar p l o t  board d a t a  w e r e  recorded  f o r  eleven 

minutes  du r ing  which t i m e  t h e  ba l loon  r o s e  t o  5,825 f e e t  a l t i t u d e  a t  an  

average  rate of rise of 8.8 f e e t  p e r  second. The f l i g h t  p a t h  w a s  somewhat 

c i r c u l a r  i n  motion w i t h  t h e  primary d i r e c t i o n  of travel be ing  w i t h  t h e  

wind. The ba l loon  performed t h r e e  loops dur ing  thee leven  minutes  t h e  t r a c k  

bas recorded .  

5.3 E'LIGHT TEST LC-2504 --- 
The second s t r eaml ined  ba l loon  f l i g h t  t es t ,  LC-2504, w a s  w i t h  ba l loon  

number 3 which w a s  t h e  same as t h e  bal loon on t h e  f i r s t  f l i g h t  test except  

t h a t  it had l a r g e r  f i n s .  Each f i n  had 13  squa re  f e e t  of area r a t h e r  t han  

10. I n  a d d i t i o n  l a r g e r  a i r s c o o p s  were i n s t a l l e d  between f i n s .  These 

a i r s c o o p s  w e r e  40 inches  long wi th  a 4:l i n l e t  t o  e x i t  area r a t i o  (R i n l e t  = 

20 i n c h e s ) .  Radar p l o t  board p o s i t i o n  d a t a  a t  one minute  i n t e r v a l s  w e r e  

o b t a i n e d  f o r  most of t h e  77 minutes  of f l i g h t .  During t h i s  t i m e  t h e  ba l loon  

reached  an a l t i t u d e  of 57,000 f e e t .  The rise rate as determined from t h e  

p l o t  board d a t a  i n d i c a t e s  cons ide rab le  v a r i a t i o n  between i n d i v i d u a l  p o s i t i o n  

p o i n t s .  Because t h e  accuracy  of i nd iv idua l  p o s i t i o n  p o i n t s  i s  q u e s t i o n a b l e ,  

t h e  ave rage  rise rate w a s  determined f o r  v a r i o u s  a l t i t u d e  increments  as 

-25- 



I .  

shown i n  F i g u r e  6. Th i s  p l o t  shows that  t h e  rise rate w a s  c o n t i n u a l l y  

i n c r e a s i n g  w i t h  a large i n c r e a s e  j u s t  before  f l o a t  a l t i t u d e .  It i s  

i n t e r e s t i n g  t o  n o t e  t h a t  t h e  rise rate dur ing  t h e  f i r s t  5,000 f e e t  is  

e s s e n t i a l l y  t h e  same as t h a t  of t h e  ba l loon  on t h e  f i r s t  f l i g h t  test. 

This  b a l l o o n  a l s o  began f l i g h t  i n  a h o r i z o n t a l  p o s i t i o n  and rqain- 

t a i n e d  t h a t  p o s i t i o n  d u r i n g  t h e  v i s i b l e  p o r t i o n  of t h e  f l i g h t .  

i t  obv ious ly  decreased  d rag  area dur ing  f l i g h t  which i n d i c a t e s  changing 

s t a b i l i t y  c h a r a c t e r i s t i c s  and a n g l e  of a t t a c k  w i t h  a l t i t u d e  as sugges ted  

i n  s e c t i o n  3.2. The m a x i m u m  average  rise rate w a s  22 f e e t  p e r  second 

which occur red  from 40 t o  53 thousand f e e t  a l t i t u d e .  This  maximum r ise  

However ,  

rate i s  better t h a n  double  

i s  n e a r  i t s  f l o a t  a l t i t u d e  

5.4 FLIGHT TEST LC-2507 

The t h i r d  s t r eaml ined  

t h e  i n i t i a l  r ise rate even  though t h e  ba l loon  

of 57,400 f e e t .  

ba l loon  f l i g h t  t es t ,  LC-2507, w a s  w i t h  ba l loon  

number 1, modified t o  reduce  t h e  aerodynamic smoothness of  t h e  main body. 

The b a l l o o n  w a s  i n i t i a l l y  a C-Class shape of 3 : l  f i n e n e s s  r a t i o .  Th i s  

w a s  modi f ied  by changing 3 of t h e  6 gore  seams t o  s t r a i g h t  l i n e  segments 

from n e a r  t h e  nose  t o  t h e  t a i l .  This  change had t h e  e f f e c t  of 

changing  t h e  b a l l o o n  o u t l i n e  from a smoothly changing s u r f a c e  t o  one 

made up of c o n i c a l  s e c t i o n s .  No a i r scoops  w e r e  added and t h i s  ba l loon  

had s m a l l  f i n s  of o n l y  7 squa re  f o o t  area each .  This  s t r eaml ined  ba l loon  

a l s o  r o s e  i n  a n e a r  h o r i z o n t a l  p o s i t i o n  du r ing  t h e  v i s u a l  p o r t i o n  of t h e  

f l i g h t .  The average  rise rate dur ing  t h e  f i r s t  10,000 f e e t  o f  a l t i t u d e  

w a s  10 f e e t  p e r  second or e s s e n t i a l l y  t h e  same as t h e  f i r s t  two stream- 

l i n e d  b a l l o o n s  f l i g h t  t e s t e d .  However, a t  10,500 f e e t  a l t i t u d e  a n  a b r u p t  

change i n  rise rate occurred  as shown i n  F i g u r e  7 .  The rise rate became 
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a maximum of 46 feet p e r  second a t  11,000 f e e t  a l t i t u d e .  The d i r e c t i o n a l  

s t a b i l i t y  of t h i s  s t r eaml ined  ba l loon  had been ve ry  good up u n t i l  t h e  t i m e  

of t h e  change i n  rise rate.  Soon a f t e r  t h e  s t r e a m l i n e d  ba l loon  a t t a i n e d  

the h i g h e r  rates of rise it began a t i g h t  s p i r a l  motion performing t w o  

t o  t h r e e  loops  p e r  minute. The rise r a t e  changed as much as 5 t o  10 f e e t  

p e r  second dur ing  t h e s e  s p i r a l  motions w i t h  t h e  ave rage  rate of rise being 

about  35 f e e t  p e r  second from an a l t i t u d e  of 11,000 feet t o  28,000 feet. 

Radar p l o t  board d a t a  are n o t  a v a i l a b l e  f o r  t h e  p e r i o d  from 28,000 f e e t  

t o  f l o a t  a l t i t u d e  but  it i s  known t h a t  t h e  s t r e a m l i n e d  ba l loon  d i d  a t t a i n  

an  a l t i t u d e  of  50,000 f e e t  a f te r  43 minutes of f l i g h t .  

of t h i s  i n v e s t i g a t o r  t h a t  t h e  change in ba l loon  s u r f a c e  shape, combined 

w i t h  t h e  change i n  l o c a t i o n  of t h e  ba l loon  c e n t e r - o f - f r e e - l i f t  w i th  a l t i t u d e ,  

accoun t s  f o r  t h e  change i n  s t a b i l i t y  a t  10,500 f e e t  a l t i t u d e .  It i s  

obvious  t h a t  t h e  ba l loon  has  n o t  become comple te ly  s t a b l e  a t  28,000 f e e t  

a l t i t u d e .  Later examinat ion  of r ada r  t r a c k  t a p e  d a t a  should i n d i c a t e  i f  

complete s t a b i l i t y  w a s  ach ieved  a t  a l t i t u d e s  above 28,000 f e e t .  

It is  t h e  b e l i e f  

5.5 FLIGHT TEST LC-2508 -. 

T h i s  f l i g h t  test  w a s  w i th  a small 9- foot  long s t r e a m l i n e d  ba l loon  - .- _._ - - ," _ _  

of modi f ied  C - C l a s s  shape. The ba l loon  had a 4: l  f i n e n e s s  r a t i o ,  and w a s  

modi f ied  i n  shape p r i m a r i l y  by u s e  of a c o n i c a l  shape _ _  f o r  - _  t h e  - .  a f t  p o r t i o n  

of t h e  body and s t r a i g h t  l i n e  segments i n  shape o u t l i n e  over  t h e  forward 

p o r t i o n  of t h e  body as  shown i n  F igure  2 .  Th i s  ba l loon  shape w a s  n o t  

o r i g i n a t e d  f o r  f l i g h t  purposes  bu t  r a t h e r  as a u n i t  f o r  f i n  s t r u c t u r e  

s t u d i e s .  P r e l i m i n a r y  f l i g h t  tests of t h i s  u n i t  i n d i c a t e d  v e r y  s t a b l e  

f l i g h t  c h a r a c t e r i s t i c s ,  t h e r e f o r e  a n  ac tua l  f i e l d  f l i g h t  tes t  w a s  con- 

duc ted  t o  o b t a i n  performance d a t a .  V i s u a l  o b s e r v a t i o n s  and r a d a r  p l o t  

board d a t a  i n d i c a t e d  comple te ly  s t a b l e  f l i g h t .  The rise rate v e r s u s  
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altitude for this unit is presented in Figure 8 .  The initial rise rate 

of 34 feet per second is better.than three times that obtained for initial 

flight of any of the other streamlined balloons tested. It should be 

noted here that the ratio of buoyancy to weight is only 3:l whereas the 

other balloons ranged from 7.5:l to 12.3:l except for the hemisphere-cone 

balloon which failed structurally at the start of flight. 

5.6 FLIGHT TEST LC-2509 - 
This flight test was conducted with balloon number 6 bodified to 

have the same general body shape as balloon number 7, which flew success- 

fully. 

area each. This balloon also flew in a near horizontal position at time 

of launch and during the visual portion of the flight. At present no 

radar plot board data are available for analysis of the entire flight, 

but it is anticipated that a change in flight characteristics will be 

-. ._ 

This streamlined balloon had three fins with 10 square feet of 

noted at some altitude. 

5.7 FLIGHT TEST LC-2511 -- -. 

After the first few flight tests it was concluded that . -  a streamlined 

balloon design was needed which located the center of buoyancy as far 

forward as possible. In addition it was desired that the main body should 

noc have an efficient lift producting surface. 

efficient shape for volume purposes and a cone would provide a nonaero- 

dynamic body for locating the fins as far aft as possible. 

streamlined balloon designated as a hemisphere-cone design of 4:l fineness 

ratio was fabricated (Figure 9) for the last flight test. An additional 

modification made specifically for this unit, was the use of four rather 

than three tail fins and the tapering or  streamlining of the fins from the 

A sphere is the most 

A special 
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l e a d i n g  edge t o  t r a i l i n g  edge i n  a d d i t i o n  t o  t a p e r i n g  from t h e  body t o  

t h e  f i n  t i p .  

enough for t h e i r  area of 18 s q u a r e  f e e t  each,and one f i n  a c t u a l  t o r e  open 

The actual f l i g h t  tes t  proved t h a t  t h e  f i n s  w e r e  n o t  r i g i d  

a t  t h e  a t tachment  p o i n t  a t  t h e  t i m e  of launch which r e s u l t e d  i n  f a i l u r e  of t h e  

t h e  u n i t  as a test i t e m .  T h i s  u n i t  has been s u b j e c t e d  t o  f u r t h e r  des ign  

m o d i f i c a t i o n s  t o  i n c l u d e  web re inforcements  between f i n s ,  and f u r t h e r  f l i g h t  

tests are planned. 

N o  r a d a r  p l o t  board d a t a  of f l i g h t  LC-2511 w e r e  a v a i l a b l e  i n  time f o r  

t h i s  r e p o r t .  

5 .8  RATA ANALYSIS -- 

It i s  of i n t e r e s t  t o  de te rmine  w h a t  changes would occur  i n  l o c a t i o n  

of t h e  c e n t e r - o f - f r e e - l i f t  w i t h  a l t i t u d e  f o r  a p a r t i c u l a r  ba l loon  f l i g h t .  

F l i g h t  LC-2504 i s  of s p e c i a l  i n t e r e s t  as a g radua l  change i n  f l i g h t  con- 

d i t i o n s  occur red  w i t h  a l t i t u d e .  

of 1.11 pounds. The t o t a l  buoyant f o r c e  w a s  10.62 pounds f o r  a f r e e  l i f t  

of 9.51 pounds a t  ground level. The c e n t e r  of buoyancy w a s  82.9 inches  

from t h e  nose.  The c e n t e r - o f - f r e e - l i f t  w a s  80 inches  from t h e  nose  a t  

ground level but  changed l o c a t i o n  with a l t i t u d e  as shown i n  F igu re  10. 

Th i s  p a r t i c u l a r  ba l loon  had a b a s i c  weight 

F i g u r e  6 shows t h a t  t h e  h i g h e s t  average  rate of rise occur red  between 

40 and 50 thousand f e e t  a l t i t u d e .  A t  40 thousand f e e t  a l t i t u d e  t h e  c e n t e r -  

o f - f r e e - l i f t  had moved forward 11 inches from -504 L t o  0.42 L. It should  

be n o t e d  h e r e  t h a t  t h e  c e n t e r - o f - f r e e - l i f t  of ba l loon  number 7 (which f l e w  

nose  up a l l  t h e  way) w a s  a t  0.430 L a t  t i m e  of launch. It i s  a l s o  i n t e r e s t -  

i n g  t o  n o t e  t h a t  t h e  c e n t e r - o f - f r e e - l i f t  o f  t h e  large hemisphere-cone 

s t r e a m l i n e d  ba l loon  i s  a t  0.428 L. 
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Detai led  ana lys i s  of f l i g h t  LC-2509 should be performed as soon as 

data are ava i lab le  t o  determine i f  the  change in  locat ion of the center-  

o f - f r e e - l i f t  t o  42 per cent  or less of the balloon length resu l ted  i n  a 

not iceable  change i n  performance. 
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8 . 0  CONCLUSIONS AND RECOMMENDATIONS --- 

I 

Small streamlined balloons have been successfully flown _ . _  in a stable 

vertical flight path at rise rates of 30 feet per __ _ -  second. 

Larger size balloons of the same general configuration have not 

risen in a stable nose-up position at time of launch, yet have been 

subject to changes in stability with altitude. 

It appears desirable that the balloon center-of-volume be as far 

forward as possible and that the main body should not be aerodynamically 

curved for lift purposes. 

Base on the information that (1) the balloon center-of-free-lift 

(C.F.L.) is the neutral moment center and (2) that the one stable balloon 

configuration tested had the C.F.L. at 0.42 L, it is suggested that 

several streamlined balloons of one size and shape, such as the hemisphere- 

cone system, be fabricated and then balanced by weight addition so that 

the C.F.L. varies in location from approximately 0.25 L to 0.45 L. Flight 

test of these balloons would determine the effect of C.F.L. location on 

stability characteristics. 

It is also of importance to determine if a streamlined balloon shape 

can be established that is statically and dynamically stable at zero angle 

of attack for the range of C. F. L. locations possible. This will be 

somewhat dependent on fin types and sizes. Pendulum-type wind tunnel tests 

of models having a C.G. location at the desired C.F.L. would give the de- 

sired data, as the C.G. is the neutral moment center for a heavier-than- 

air vehicle. 
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